1	Supporting Information for:
2	Identification of novel perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in natural waters using accurate mass time-of-flight mass spectrometry (TOFMS)
4 5	Mark Strynar ¹ , Sonia Dagnino ² , Rebecca McMahen ² , Shuang Liang ² , Andrew Lindstrom ¹ , Erik Andersen ¹ , Larry McMillan ³ , Michael Thurman ⁴ , Imma Ferrer ⁴ , Carol Ball ⁵
6 7	1. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC;
8 9	2. ORISE fellow at the United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, North Carolina;
10	3. National Caucus and Center on Black Aged, Inc, Durham, NC;
11	4. Center for Environmental Mass Spectrometry, University of Colorado in Boulder CO;
12	5. Agilent Technologies Inc., Wilmington, DE
13	
14	
15	
16	This document includes one table, and 12 SI figures, on 13 pages.
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

Table S1. Water samples description and GPS coordinates.

Sample ID	Description	Latitude	Longitude
CFR 001	Cape Fear river Tar Heel, NC	34.74525	-78.78574
CFR 002	Cape Fear river below Huske lock and dam #3	34.83026	-78.82246
CFR 003	unnamed tributary	34.83179	-78.82375
CFR 004	Cape Fear river above Huske lock and dam #3	34.83544	-78.82347
CFR 005	Cape Fear river below Rockfish creek	34.96820	-78.81579
CFR 006	Rockfish Creek	34.95610	-78.84424
CFR 007	Rockfish Creek WWTP effluent	34.96834	-78.82765
CFR 008	Cape Fear River at Fayetteville boat ramp access	34.99669	-78.85076
CFR 009	Regional drinking water sample	34.94199	-78.92422

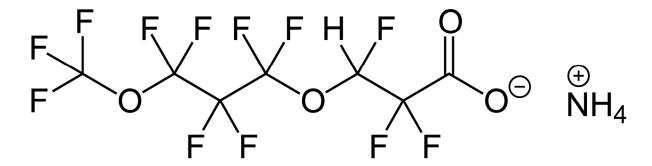


Figure S1. The structure of ADONA (4,8-dioxa-3H-perfluorononanoate) a polyfluorinated compounds used to replace classic perfluorinated compounds such as APFO.

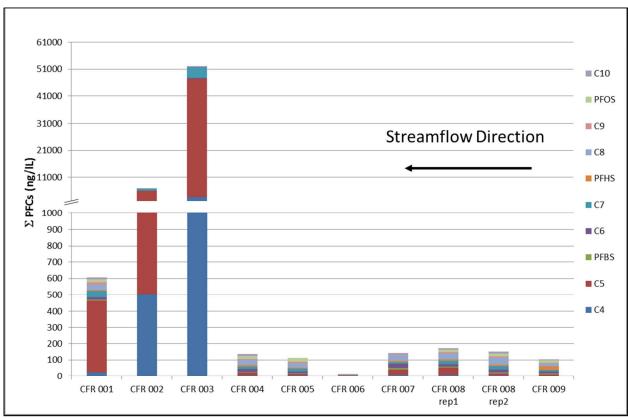
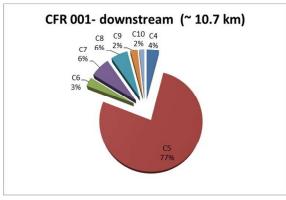
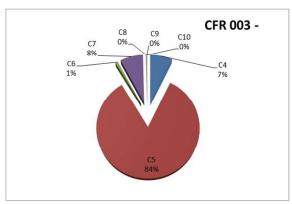
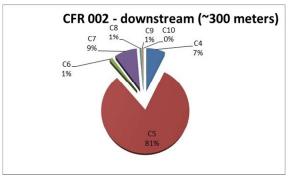
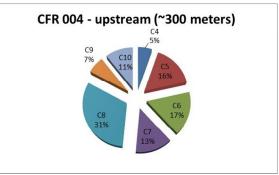






Figure S2. PFAAs found in water samples from the Cape Fear River. Note the y-axis is a split scale.

50

48

Figure S3. Proportion of PFAAs contribution to the total for select water samples from the Cape

51 Fear River.

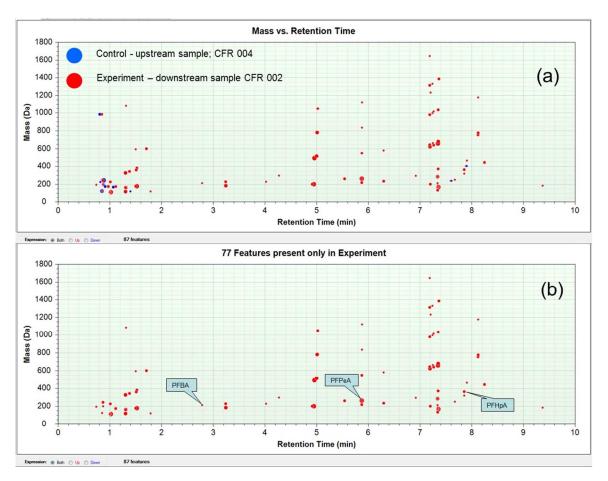
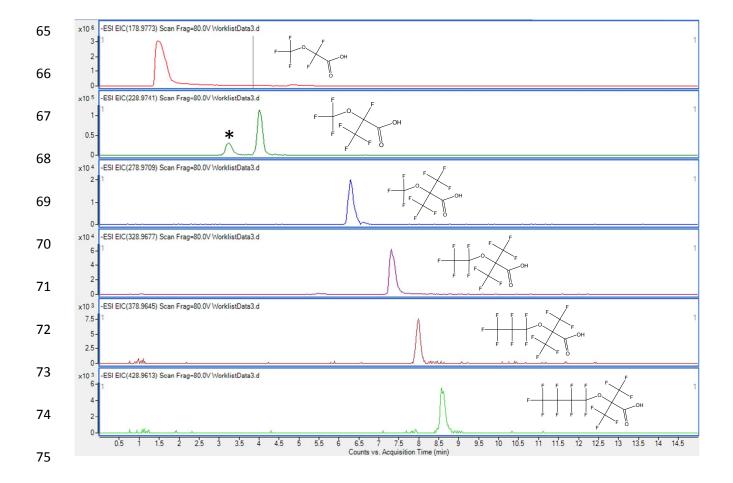
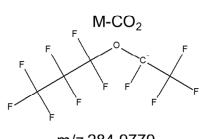
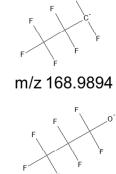


Figure S4. Mass Profiler visualization of molecular features found in (a) control and experimental sample and (b) 77 features unique only to experimental sample, with select peaks previously identified (PFBA, PFPeA and PFHpA). Note: The size of the symbol in this plot is proportional to the area of the peak. Pronounced co-eluting peaks that appear as vertical lines are likely related (i.e. fragments, M-H-, *n-mers*).


Figure S5. Extracted Ion Chromatogram (EIC) of a suspected homologous series of perfluorinated ether carboxylic acids. Note: The chromatographic peak indicated by an * is the substance associated with this homologous series based on the H⁺ and Na⁺ dimer co-elution at this retention time. The second later eluting peak in this chromatogram is a similar m/z, possibly an isomer.

Target Compound CAS # 13252-13-6

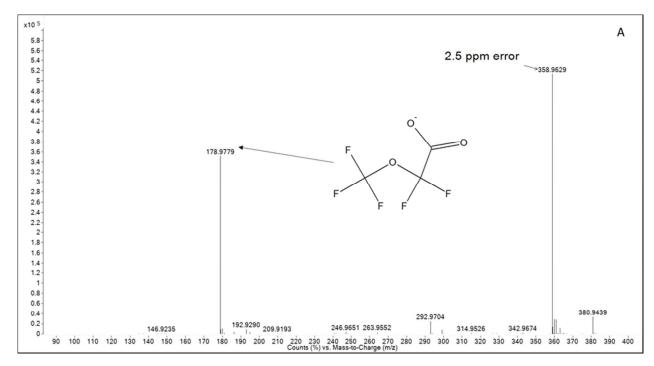
2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate

m/z 284.9779

m/z 184.9843

Composition: C(21.83%) H(0.31%) F(63.32%) O(14.54%)

Monoisotopic Mass: 329.9750 Da [M-H]-: 328.9677 Da


m/z 658.9427

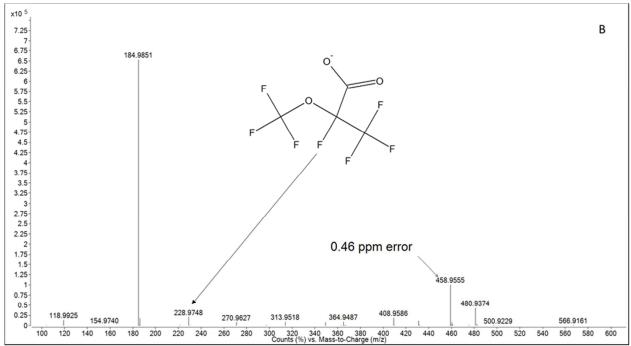

87 88

Figure S6. Identified perfluorinated ether carboxylic acid and diagnostic fragment and dimer ions.

91

89

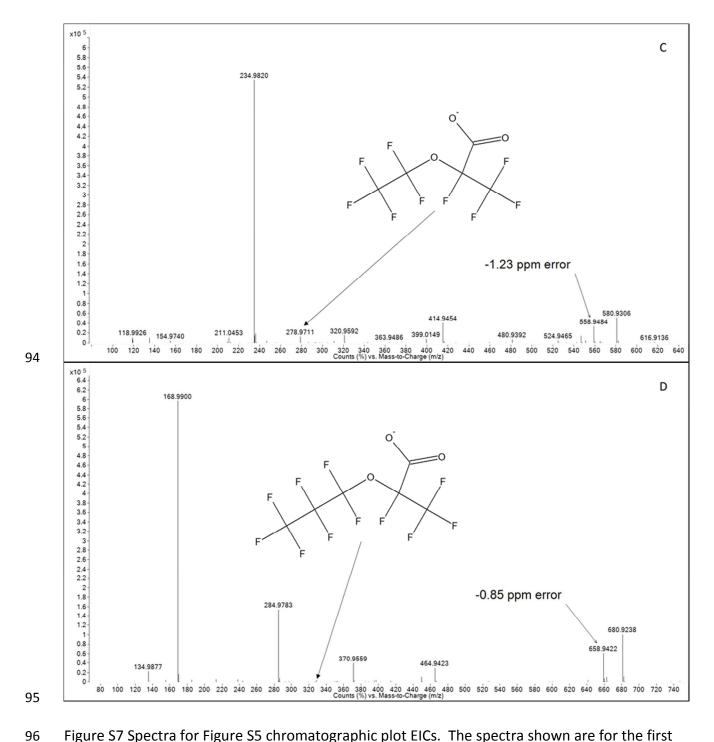


Figure S7 Spectra for Figure S5 chromatographic plot EICs. The spectra shown are for the first four eluting mono ether PFECAs shown in Figure S5. Plot A corresponds to m/z 178.9773; Plot B corresponds to m/z 228.9741; Plot C corresponds to m/z 278.9709; Plot D corresponds to m/z 328.9677. Error values shown are for the corresponding [2M-H]⁻ (Table 1)

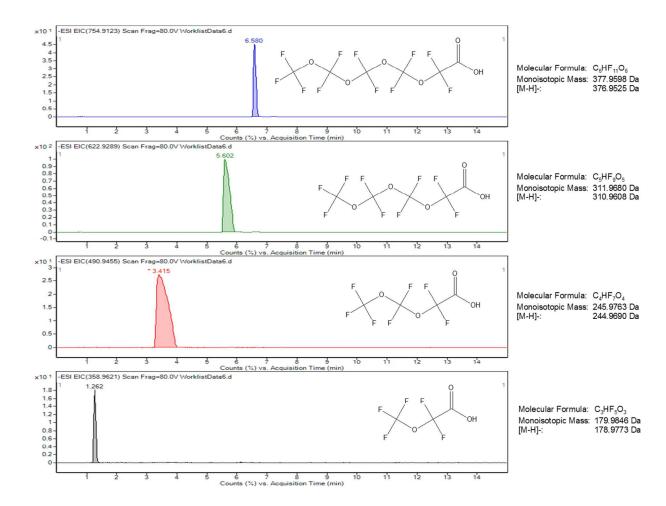


Figure S8. Extracted ion chromatogram of additional perfluorinated ether carboxylic acids homologous series. Proton bound dimer EIC shown for chromatogram. Monomer structure and exact mass shown

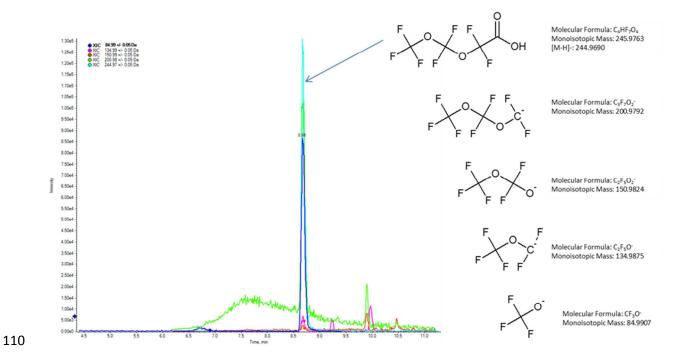


Figure S9. QTOF fragment ions for $C_4HF_7O_4$ (m/z 244.9691) pefluoroether carboxylic acid.

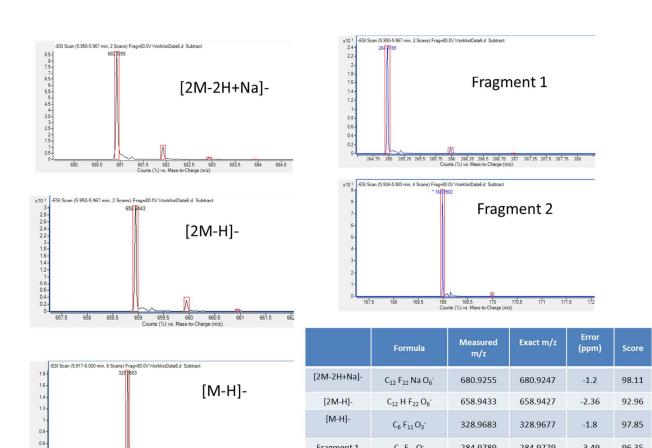


Figure S10. Spectrum, isotope pattern matching and identified adducts and fragment of molecular feature (m/z 328.9683) found in water. The table shows the formula, measured m/z, the exact m/z, the error associated with the measurement and the software scoring of the isotope cluster. The red boxes around each spectrum peak indicate the agreement between the measured and theoretical isotope cluster. The scoring is a bundled measurement of the accurate mass of the monoisotopic peak versus theoretical, the isotope abundance and the isotope spacing.

Fragment 1

Fragment 2

C₅ F₁₁ O⁻

C₃ F₇-

284.9789

168.9902

284.9779

168.9894

-3.49

-4.75

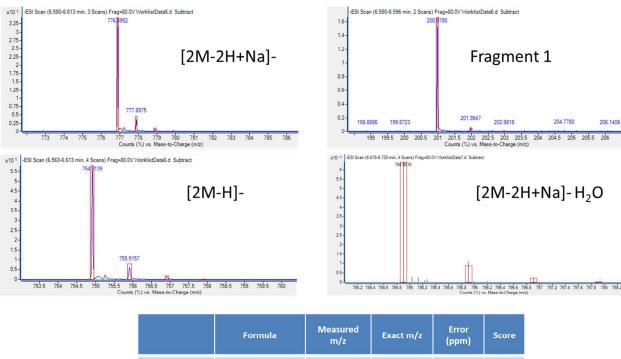
96.35

84.41

113

114

115


116

117

118

119

120 121

[2M-2H+Na]-776.8942 C₁₂ F₂₂ Na O₁₂ 776.8952 -1.31 95.92 [2M-H]-754.9122 C₁₂ H F₂₂ O₁₂ 754.9139 -2.22 92.66 [M-H]-Not C₆ F₁₁ O₆-376.9525 Observed Fragment 1 C₃ F₇ O₂-200.9785 200.9792 3.71 95.18 [2M-2H+Na]-C₁₂ H₃ F₂₂ Na O₁₃ 794.9016 794.9047 3.95 84.15 H₂O

123

126127

128

129

130

131

Figure S11. Spectrum, isotope pattern matching and identified adducts and fragment of molecular feature (m/z 376.9525) found in water. The table shows the formula, measured m/z, the exact m/z, the error associated with the measurement and the software scoring of the isotope cluster. The red boxes around each spectrum peak indicate the agreement between the measured and theoretical isotope cluster. The scoring is a bundled measurement of the accurate mass of the monoisotopic peak versus theoretical, the isotope abundance and the isotope spacing.

132

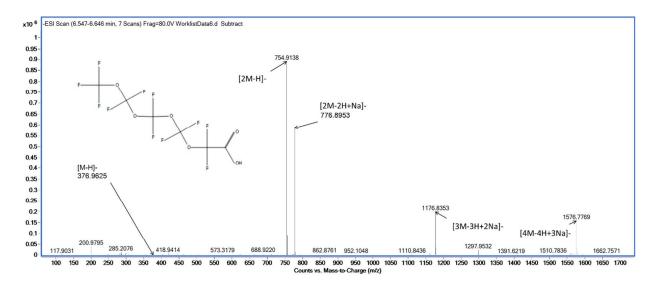


Figure S12. Spectrum of novel perfluorinated ether carboxylic acids showing proton bound and sodium bound *n*-mers found. The structure shown is the parent compound. The various insource n-mers formed are shown with shorthand nomenclature for dimers, trimers and tetramers.